A Linear Variational Principle for Riemann Mapping and Discrete Conformality

نویسندگان

  • Nadav Dym
  • Yaron Lipman
  • Raz Slutsky
چکیده

We consider Riemann mappings from bounded Lipschitz domains in the plane to a triangle. We show that in this case the Riemann mapping has a linear variational principle: it is the minimizer of the Dirichlet energy over an appropriate affine space. By discretizing the variational principle in a natural way we obtain discrete conformal maps which can be computed by solving a sparse linear system. We show that these discrete conformal maps converge to the Riemann mapping in H, even for nonDelaunay triangulations. Additionally, for Delaunay triangulations the discrete conformal maps converge uniformly and are known to be bijective. As a consequence we show that the Riemann mapping between two bounded Lipschitz domains can be uniformly approximated by composing the Riemann mappings between each Lipschitz domain and the triangle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex Analysis

I. The Complex Number System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 II. Elementary Properties and Examples of Analytic Fns. . . . . . . . . . . . . . . . 3 Differentiability and analyticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 The Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

A VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS

The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...

متن کامل

Combination of Brain Conformal Mapping and Landmarks: A Variational Approach

To compare and integrate brain data, data from multiple subjects are typically mapped into a canonical space. One method to do this is to conformally map cortical surfaces to the sphere. It is well known that any genus zero Riemann surface can be mapped conformally to a sphere. Since the cortical surface of the brain is a genus zero surface, conformal mapping offers a convenient method to param...

متن کامل

Sufficiently Rich Families of Planar Rings

It has been conjectured that if G is a negatively curved discrete group with space at infinity ∂G the 2 -sphere, then G has a properly discontinuous, cocompact, isometric action on hyperbolic 3 -space. Cannon and Swenson reduced the conjecture to determining that a certain sequence of coverings of ∂G is conformal in the sense of Cannon’s combinatorial Riemann mapping theorem. In this paper it i...

متن کامل

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.02221  شماره 

صفحات  -

تاریخ انتشار 2017